30 research outputs found

    Challenges, Ideas, and Innovations of Joined-Wing Configurations: A Concept from the Past, an Opportunity for the Future

    Get PDF
    Diamond Wings, Strut- and Truss-Braced Wings, Box Wings, and PrandtlPlane, the so-called “Join-edWings”, represent a dramatic departure from traditional configurations. Joined Wings are characterized by a structurally overconstrained layout which significantly increases the design space with multiple load paths and numerous solutions not available in classical wing systems. A tight link between the different disciplines (aerodynamics, flight mechanics, aeroelasticity, etc.) makes a Multidisciplinary Design and Optimization approach a necessity from the early design stages. Researchers showed potential in terms of aerodynamic efficiency, reduction of emissions and superior performances, strongly supporting the technical advantages of Joined Wings. This review will present these studies, with particular focus on the United States joined-wing SensorCraft, Strut- and Truss- Braced Wings, Box Wings and PrandtlPlane

    A Hybrid Reduced-Order Model for the Aeroelastic Analysis of Flexible Subsonic Wings—A Parametric Assessment

    Get PDF
    A hybrid reduced-order model for the aeroelastic analysis of flexible subsonic wings with arbitrary planform is presented within a generalised quasi-analytical formulation, where a slender beam is considered as the linear structural dynamics model. A modified strip theory is proposed for modelling the unsteady aerodynamics of the wing in incompressible flow, where thin aerofoil theory is corrected by a higher-fidelity model in order to account for three-dimensional effects on both distribution and deficiency of the sectional air load. Given a unit angle of attack, approximate expressions for the lift decay and build-up are then adopted within a linear framework, where the two effects are separately calculated and later combined. Finally, a modal approach is employed to write the generalised equations of motion in state-space form. Numerical results were obtained and critically discussed for the aeroelastic stability analysis of a uniform rectangular wing, with respect to the relevant aerodynamic and structural parameters. The proposed hybrid model provides sound theoretical insights and is well suited as an efficient parametric reduced-order aeroelastic tool for the preliminary multidisciplinary design and optimisation of flexible wings in the subsonic regime

    A code for surface modeling and grid generation coupled to a panel method for aerodynamic configuration design

    Get PDF
    An integrated platform has been developed which features a geometric, a grid generation and an aerodynamic analysis module. The main intent is to execute a quick though reliable preliminary aerodynamic analysis on a generic complex aerodynamic configuration and, at the same time, provide a mean of exporting the defined geometry or grid to leading CAE/CAD, meshing and analysis softwares, for deep detail modifications or more accurate, although time consuming, analysis. In the geometric module, the process of shape definition is easily and intuitively achieved with the aid of specific features and tools. The geometric description relies on NURBS, a flexible, accurate and efficient parametric form. Once the configuration has been defined, the user is ready to move on the grid generation module, or to export it to IGES standard format in order to use CAE/CAD, meshing or aerodynamic analysis programs. The grid generation module is capable to build structured or unstructured meshes. Both of the processes are automatized, even if the user can easily set and control grid parameters. The structured grid generator is oriented to LaWGS description standard, while the unstructured grid can be exported to different formats. The user is now ready to launch Pan Air, a panel method, as the aerodynamic solver. The preprocessor and postprocessor aid to the definition of the flow parameters and to the graphical visualization of the results. One of the strength of this code is the user friendly GUI organization of each module: the user is aided throughout all the steps. Besides this, every module relies on fast computational algorithms to speed up the overall process. For all these reasons, this code has a natural lean to be used in pair with an optimization tool

    Nonlinear Analysis of PrandtlPlane Joined Wings: Effects of Anisotropy

    Get PDF
    Structural geometrical nonlinearities strongly affect the response of joined wings: it has been shown that buckling evaluations using linear methods are unreliable, and only a fully nonlinear stability analysis can safely identify the unstable state. This work focuses on the understanding of the main physical mechanisms driving the wing system's response and the snap-buckling instability. Several counterintuitive effects typical of unconventional nonplanar wing systems are discussed and explained. In particular, an appropriate design of the joint-to-wing connection may reduce the amount of bending moment transferred, and this is shown to eventually improve the stability properties, although at price of a reduced stiffness. It is also demonstrated that the lower-to-upper-wing stiffness ratio and the torsional-bending coupling, due to both the geometrical layout and anisotropy of the composite laminates, present a major impact on the nonlinear response. The findings of this work could provide useful indications to develop effective aeroelastic reduced-order models tailored for airplane configurations experiencing important geometric nonlinearities such as PrandtlPlane, truss-braced and strut-braced wings, and sensorcraft

    Generalized Unified Formulation shell element for functionally graded Variable-Stiffness Composite Laminates and aeroelastic applications

    Get PDF
    Composite materials have been extensively used in engineering thanks to their lightweight, superior mechanical performances and possibility to tailor the structural behavior, increasing the available design space. Variable Angle Tow (VAT) structures exploits this advantage by adopting a curvilinear patterns for the fibers constituting the lamina. This work, for the first time, extends the Generalized Unified Formulation (GUF) to the case of fourth-order triangular shell elements and VAT composites. Functionally graded material properties in both the thickness and in-plane directions are also possible. The finite element has been formulated with layers of variable thickness with respect to the in-plane coordinates. GUF is a very versatile tool for the analysis of Variable Stiffness Composite Laminates (VSCLs): it is possible to select generic element coordinate systems and define different types of axiomatic descriptions (Equivalent Single Layer, Layer Wise, and Zig-Zag enhanced formulations) and orders of the thickness expansions. Each displacement is independently treated from the others. All the infinite number of theories that can be generated with GUF are obtained by expanding six theory-invariant kernels (formally identical for all the elements), allowing a very general implementation. Finally, the possibility of tailoring the theory/order to increase the accuracy in desired directions makes the GUF VAT capability a very powerful tool for the design of aerospace structures

    Aerostructural Wing Shape Optimization assisted by Algorithmic Differentiation

    Get PDF
    With more efficient structures, last trends in aeronautics have witnessed an increased flexibility of wings, calling for adequate design and optimization approaches. To correctly model the coupled physics, aerostructural optimization has progressively become more important, being nowadays performed also considering higher-fidelity discipline methods, i.e., CFD for aerodynamics and FEM for structures. In this paper a methodology for high-fidelity gradient-based aerostructural optimization of wings, including aerodynamic and structural nonlinearities, is presented. The main key feature of the method is its modularity: each discipline solver, independently employing algorithmic differentiation for the evaluation of adjoint-based sensitivities, is interfaced at high-level by means of a wrapper to both solve the aerostructural primal problem and evaluate exact discrete gradients of the coupled problem. The implemented capability, ad-hoc created to demonstrate the methodology, and freely available within the open-source SU2 multiphysics suite, is applied to perform aerostructural optimization of aeroelastic test cases based on the ONERA M6 and NASA CRM wings. Single-point optimizations, employing Euler or RANS flow models, are carried out to find wing optimal outer mold line in terms of aerodynamic efficiency. Results remark the importance of taking into account the aerostructural coupling when performing wing shape optimization

    Tiltrotor with double mobile wing

    Get PDF
    A convertiplane structure (100), having a longitudinal axis x and a plane n orthogonal to it, comprises a main wing (120) arranged to rotate about at least one transversal rotation axis y, an auxiliary wing (130), which is located back with respect to main wing (120), and arranged to rotate about at least one transversal rotation axis y', at least two main propellers (220) located on the main wing (120), and at least two auxiliary propellers (230) located on the auxiliary wing (130). The auxiliary wing (130) is located at a vertical height higher than main wing (120). Two vertical wings (140) are also provided located in such a way that the projections on the plane n of the main wing (120), of the auxiliary wing (130) and of the vertical wings (140) shape a closed polygon, thus reducing the induced drag and increasing the overall aerodynamic efficiency

    Exploratory Structural Investigation of a Hawkmoth-Inspired MAV’s Thorax

    Get PDF
    Manduca Sexta present excellent flight performances which make this insect an ideal candidate for bio-inspired engineered micro air vehicles. The actual insect presents an energetically very efficient thorax-wing flight system which needs to be fully understood for an effective design of artificial flying machines. This work discusses a preliminary finite element model which simulates the thorax-wing system and the muscles involved in the flapping motion. Both upstroke and downstroke conditions are statically analyzed with the application of load sets that simulate the contractions of the dorso-ventral and dorso-longitudinal muscles (indirect flight). Comparison with commercial software and experimental results is also presented and discussed

    Three-dimensional unsteady aerodynamic analysis of a rigid-framed delta kite applied to airborne wind energy

    Get PDF
    The validity of using a low-computational-cost model for the aerodynamic characterization of Airborne Wind Energy Systems was studied by benchmarking a three-dimensional Unsteady Panel Method (UnPaM) with experimental data from a flight test campaign of a two-line Rigid-Framed Delta kite. The latter, and a subsequent analysis of the experimental data, provided the evolution of the tether tensions, the full kinematic state of the kite (aerodynamic velocity and angular velocity vectors, among others), and its aerodynamic coefficients. The history of the kinematic state was used as input for UnPaM that provided a set of theoretical aerodynamic coefficients. Disparate conclusions were found when comparing the experimental and theoretical aerodynamic coefficients. For a wide range of angles of attack and sideslip angles, the agreement in the lift and lateral force coefficients was good and moderate, respectively, considering UnPaM is a potential flow tool. As expected, UnPaM predicts a much lower drag because it ignores viscous effects. The comparison of the aerodynamic torque coefficients is more delicate due to uncertainties on the experimental data. Besides fully non-stationary simulations, the lift coefficient was also studied with UnPaM by assuming quasi-steady and steady conditions. It was found that for a typical figure-of-eight trajectory there are no significant differences between unsteady and quasi-steady approaches allowing for fast simulations.This work was carried out under the framework of the GreenKite-2 project (PID2019-110146RB-I00) funded by MCIN/AEI/10.13039/501100011033
    corecore